NUMERICAL METHOD FOR SOLVING THE DIRICHLET BOUNDARY VALUE PROBLEM FOR NONLINEAR TRIHARMONIC EQUATION

نویسندگان

چکیده

In this work, we consider the Dirichlet boundary value problem for nonlinear triharmonic equation. Due to reduction of operator equation pair right hand side function and unknown second normal derivative be sought, design an iterative method at both continuous discrete levels numerical solution problem. Some examples demonstrate that is fourth order convergence. When does not depend on its derivatives, gives more accurate results in comparison with obtained by interior Gudi Neilan.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

Numerical Solution of a Boundary Value Problem for Triharmonic Equation

In this note we present some numerical experiments for illustrating the convergence of an iterative method for solving a boundary value problem for triharmonic equation, where a sequence of boundary value problems for the Poisson equation is solved at iterations. These results of computation confirm the theoretical conclusion in [2]. Mathematics Subject Classification: 35J40, 65N99

متن کامل

Riemann Boundary Value Problem for Triharmonic Equation in Higher Space

We mainly deal with the boundary value problem for triharmonic function with value in a universal Clifford algebra: Δ(3)[u](x) = 0, x ∈ R (n)\∂Ω, u (+)(x) = u (-)(x)G(x) + g(x), x ∈ ∂Ω, (D (j) u)(+)(x) = (D (j) u)(-)(x)A j + f j (x), x ∈ ∂Ω, u(∞) = 0, where (j = 1,…, 5)  ∂Ω is a Lyapunov surface in R (n) , D = ∑ k=1 (n) e k (∂/∂x k) is the Dirac operator, and u(x) = ∑ A e A u A (x) are unknown ...

متن کامل

Dirichlet boundary value problem for Duffing’s equation

We use a direct variational method in order to investigate the dependence on parameter for the solution for a Duffing type equation with Dirichlet boundary value conditions. Mathematics Subject Classification. 49J02

متن کامل

Iterative method for solving a nonlinear boundary value problem

In this paper, a boundary value problem for a nonlinear second-order ordinary differential equation is studied. By means of the maximum principle we established the existence and the uniqueness of a solution of the problem. Then for finding the solution an iterative method is proposed. It is proved that this method converges much faster than the Picar successive approximations and in a particul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computer Science and Cybernetics

سال: 2022

ISSN: ['1813-9663']

DOI: https://doi.org/10.15625/1813-9663/38/2/16912